Measurement of Light Vector Mesons by PHENIX Experiment at RHIC

Deepali Sharma for the PHENIX collaboration April 14, 2011

Abstract

The PHENIX experiment at RHIC has carried out systematic measurements of ϕ and ω mesons in p+p, d+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. Consistent results have been obtained using leptonic and hadronic decay modes as well as different analysis techniques.

In p+p collisions, the transverse momentum distributions of ω and ϕ , as well as all other mesons measured by PHENIX, are well described by the Tsallis distribution functional form. Combining the e^+e^- and hadronic ($\omega \to \pi^0 \gamma$, $\pi^0 \pi^+ \pi^-$, $\phi \to K^+K^-$) decay channels, ω and ϕ have been measured over a p_T range of 0 - 13.5 GeV/c and 0 - 7 GeV/c respectively. New results obtained using hadronic and dielectron channels of ω and ϕ mesons in d+Au collisions extend the p_T coverage to 0.25 - 13 GeV/c and 0 - 7 GeV/c respectively, and reveal a moderate enhancement at intermediate p_T and a hint of suppression at $p_T > 8$ GeV/c. Both observations are consistent with previous results for π^0 , $\pi^+ + \pi^-$, K_s and $K^+ + K^-$.

The nuclear modification factor of ω in Cu+Cu and Au+Au collisions measured over a p_T range of 4 - 12 GeV/c, shows that ω has a similar suppression pattern as that of π^0 and η , strengthening the observation that mesons with different masses have similar behavior but different from the one of baryons. However, ϕ in Cu+Cu and Au+Au collisions, measured from 1 - 7 GeV/c, shows a suppression, that is smaller than that of the π^0 and η in the intermediate p_T range (2 - 5 GeV/c), whereas at higher p_T , within the large experimental uncertainties, the amount of suppression appears similar to that of the light mesons. Results of ϕ production at $\sqrt{s_{NN}}=62.4$ GeV show a similar behavior but with larger uncertainties. This talk will review the most recent results obtained for light vector mesons in different collision systems and energies.